skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Zhengyue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carreira, Erick (Ed.)
    Thehydrogenoxidationreaction(HOR)inalkalineelectrolytesexhibitsmarkedlyslowerkineticsthanthatinacidic electrolytes.Thisposesacriticalchallengeforalkalineexchangemembranefuelcells(AEMFCs).Theslowerkineticsinalkaline electrolytesisoftenattributedtothemoresluggishVolmerstep(hydrogendesorption).IthasbeenshownthatthealkalineHOR activityonthePtsurfacecanbeconsiderablyenhancedbythepresenceofoxophilictransitionmetals(TMs)andsurface-adsorbed hydroxylgroupsonTMs(TM−OHad),althoughtheexactroleofTM−OHadremainsatopicofactivedebates.Herein,usingsingle- atomRh-tailoredPtnanowiresasamodelsystem,wedemonstratethathydroxylgroupsadsorbedontheRhsites(Rh−OHad)can profoundly reorganize the Pt surface water structure to deliver a record-setting alkaline HOR performance. In situ surface characterizations,togetherwiththeoreticalstudies,revealthatsurfaceRh−OHadcouldpromotetheoxygen-downwater(H2O↓)that favorsmorehydrogenbondwithPtsurfaceadsorbedhydrogen(H2O↓···Had-Pt)thanthehydrogen-downwater(OH2↓).TheH2O↓ furtherservesasthebridgetofacilitatetheformationofanenergeticallyfavorablesix-membered-ringtransitionstructurewith neighboringPt−Had andRh−OHad,thusreducingtheVolmerstepactivationenergyandboostingHORkinetics. 
    more » « less
    Free, publicly-accessible full text available April 9, 2026